
Constant-Time Discontinuity Map for Forward
Sensitivity Analysis to Initial Conditions: Spurs
Detection in Fractional-N PLL as a Case Study

Federico Bizzarri, Angelo Brambilla, Alessandro Colombo
DEIB, Politecnico di Milano, Italy

Email: {fedrico.bizzarri, angelo.brambilla, alessandro.colombo}@polimi.it

Sergio Callegari
ARCES/DEI, University of Bologna, Italy

Email: sergio.callegari@unibo.it

Abstract—The constant-time discontinuity map is presented
and used to compute the nonlinear effects of quantization noise
injected in fractional−N phase locked loops by ΔΣ modulators.
The effects of quantization noise are studied through sensitivity
analysis of the nominal trajectory of a noiseless integer−N phase
locked loop with respect to a small additive perturbation. It is
shown that, to accurately measure the effects of quantisation
noise injection, a simple linearized model is not sufficient. A
nonlinear constant-time discontinuity map across the switching
points of the vector field allows to improve the sensitivity analysis
significantly, at a small computational cost.

I. INTRODUCTION

The zero-time discontinuity map (ZDM) is well known in the
area of hybrid dynamical system. In this paper, a generalization
of the ZDM, that we referred to as constant-time discontinuity
map (CT-DM), is introduced and exploited to efficiently and
reliably compute the effects of quantization noise injected by
ΔΣ modulators in fractional−N phase locked loops (PLLs).

Sequences generated by the ΔΣ modulator can induce spurs
in the output spectrum of the PLL mainly because of static
and dynamic mismatch of the charge pump (CP) and its
interaction with the digital delay usually present in the reset
path of the phase frequency detector (PFD) [1]–[4]. These spurs
are sequence-dependent and thus very difficult to compute
since very time-consuming time-domain simulations must be
performed in order to inject sufficiently long sequences (e.g.,
including more than 106 samples). Recently variational (i.e.,
linearized) models based on the saltation matrix were proposed
to efficiently and reliably simulate effects of noise sources in
PLLs [5] without resorting to macro-models. Unfortunately,
despite providing accurate results, they are unable to correctly
detect these spurs.

In this paper we present an advanced variational model
based on the CT-DM. The basic idea is to resort to a standard,
linearized model to simulate the system away from disconti-
nuities, and to use a CT-DM to jump across discontinuities
with sufficient numerical accuracy to correctly account for
the fleeting nonlinear effects that are causing the spurs. The
nonlinearity in the closed loop of the PLL manifests itself in
the short time interval in which the action of the PFD and of
the CP occurs. This results in a switching in the vector field.
The linearization of the system dynamics at these points was
done in [5] using the saltation matrix operator, i.e. the first

order approximation of a ZDM. We show that by adopting a
CT-DM and suitably increasing its order of approximation an
efficient and accurate simulation tool can be obtained for fast
testing of sequences of the ΔΣ modulator.

II. A PRIMER ON DISCONTINUITY MAPS

A discontinuous system is a tuple {X,Q,F,G,R}, where
X ⊆ Rn is the space of the continuous variables x; Q ⊆ N is
a set of values for the discrete variable q; F : X ×Q→ Rn
is a collection of smooth vector fields fq; G ⊂ X × Q is a
collection of discontinuity sets (or guards) each composed of
possibly intersecting (n − 1)-dimensional smooth manifolds
in X , and R : G → X × Q is a collection of reset maps.
The vector fields fq describe the system’s evolution in each of
the domains q ∈ Q, while guards and reset maps describe the
rules of switching between domains. The flow

φ(t, t0,x(t0), q(t0)) : R×X ×Q→ X ×Q (1)

is a map from X ×Q to itself, parametrised in the time t.
Consider a ball B in X centered at x(t0) and the set of initial

conditions (B, q) for some fixed q, and consider a time t such
that φ(t, t0, x̃(t0), q(t0)) maps all initial states (x̃(t0), q(t0)) :
x̃(t0) ∈ B onto states with the same discrete variable q′ in
the (deformed) ball B′. A ZDM M0 for the set (B, q) and the
time t is the map needed to verify the system of equations

φ(t, t0, x̃(t0), q(t0)) = x̃(t) =
φ2(t, t1, ·, ·) ◦M0 ◦ φ1(t1, t0, x̃(t0), q(t0))︸ ︷︷ ︸

x̃(t1)

, (2)

where φ1 and φ2 are flows of the smooth vector fields fq and
fq′ , respectively, and are assumed to be smoothly extended
beyond the boundaries of their domains q and q′. In the
literature, ZDMs have been studied and classified for many
common discontinuity geometries. In a neighbourhood of a
smooth portion of a guard, and away from points of tangency
of the flow with G, the first-order approximation of a ZDM
is known as the saltation matrix [6]. At points where the
guard has a corner or is defined as the intersection of two
smooth surfaces, the map is known to be continuous but
nondifferentiable. Similarly, in the vicinity of points of tangency
of the flow with the guard, the map is continuous, but can



Figure 1. Sketchs of ZDMs. On the left, the ZDM is applied as soon as the
reference trajectory reaches the guard whereas the perturbed trajectory is still
in the domain q. On the right, the choice of t1 is more generic.

be differentiable or not depending on the geometry the flow
around the discontinuity [6], [7].

A sketch of a typical ZDM is depicted in the left part of
Fig. 1 where a (reference) trajectory originated at x(t0) leaves
a domain q = 1 and enters a domain q′ = 2. Given any
small perturbation ξ of x(t0), the ZDM is the map that has be
applied to x̃(t1) in the domain q so that, by simply integrating
M0(x̃(t1)) in the flow of fq′ , one obtains the correct integral
once the trajectory reaches the domain q′. A more complex
example (q = 1 and q′ = 4) is reported in the right part of
Fig. 1, where the reference trajectory reaches two consecutive
guards near their intersection point χ. In this case, it may
happen that the perturbed trajectory hits the manifolds in the
inverse sequence (with respect to the reference trajectory) and
the ZDM must be computed taking into account that initial
conditions in B may behave differently depending on the order
with which they reach the guards.

In principle Eq. (2) can be modified in order to apply the
ZDM directly at x̃(t0) obtaining

φ(t, t0, x̃(t0), q(t0)) = φ2(t, t0, ·, ·) ◦M0 ◦ x̃(t0) . (3)

An example is reported in Fig. 2 for a trajectory reaching three
consecutive guards (q = 1 and q′ = 5).

An extension of the ZDM is obtained modifying Eq. (2) as

φ(t, t0, x̃(t0), q(t0)) =

φ2(t, t1 + δt, ·, ·) ◦Mδt ◦ φ1(t1, t0, ˜x(t0), q(t0)) ,
(4)

with δt ∈ R. We call this the constant-time discontinuity
map (CT-DM). An example of such a map is depicted in
Fig. 2 in the case t1 = t0. It is worth mentioning that if

Figure 2. The ZDMM0(·) is applied directly in B. The solid dot corresponding
to Mδt(x̃(t0)) represent a CT-DM applied to initial conditions in B.

δt = t − t0, then Mt−t0(x̃(t0)) maps x̃(t0) directly in x̃(t).
Note that the derivation of the CT-DM for typical discontinuity
geometries remains formally equivalent to the corresponding
ZDM, and shares the same smoothness properties. For a given
dynamical system, a sufficiently differentiable CT-DM can be
computed numerically, by identifying the coefficients of its
Taylor expansion

Mδt(x+ ξ) := Mδt|x +DMδt|x ξ + . . . , (5)

where D· is the differential of · in x.1 For a given x, the
coefficients of the above expansion can be identified by least
squares, after having computed a sufficiently large number of
pairs (Mδt(x+ ξ), ξ) by numerical integration.

III. TRAJECTORY SENSITIVITIES WITH RESPECT TO INITIAL
CONDITIONS USING THE CT-DM

Consider a generic discontinuous system {X,Q,F,G,R}
where F is assumed autonomous and G time-invariant, and
indicate γ as a periodic orbit of the system. This is fully general,
as any nonautonomous F can be rewritten as autonomous (time-
dependent) once the open loop input signal or the feedback
law have been designed, and any time-variant G is rewritten
as time-invariant by adding time to the state variables.

The behaviour of small perturbations to a trajectory through
the flow of F can be easily studied using the fundamental
solution matrix: given the flow φ(t, t0,x(t0), q(t0)), it is the
matrix Ψ(t, t0) of partial derivatives of the flow with respect
to x(t0), evaluated at (x(t), q(t)). Even if x(t0) and q(t0)
are parameters of the fundamental solution matrix, to keep
the notation simple we will not state them explicitly. The
fundamental solution matrix maps infinitesimal perturbation of
x(t0) to infinitesimal perturbations of x(t).

During a time interval [t0, t], when the system remains in
a single domain q, γ is a solution of a smooth vector field
fq(x, t), and the fundamental solution matrix can be computed
as the solution of the variational problem

Ψ̇(t, t0) = Jq(x, t)Ψ(t, t0), Ψ(t0, t0) = I, (6)

where Jq is the Jacobian of fq and I is the identity matrix.
A sufficiently small perturbation ξ(t0) to an initial condition
γ(t0) is then mapped by the flow of fq through the map

ξ(t) = Ψ(t, t0)ξ(t0) +O(‖ξ‖2). (7)

Typically, away from discontinuities and strong nonlinearities,
the first-order approximation of the above map is sufficient to
capture the behaviour of small perturbations of ξ(t), so that
the fundamental solution matrix is all that is needed. When the
flow crosses a discontinuity (or a strong nonlinearity) during
the interval [t0, t], the above equation can be rewritten in terms
of a CT-DM (with constant time δt = t− t0) as

ξ(t) = Mt−t0(x(t0) + ξ(t0))− x(t) +O(‖ξ(t0)‖ζ+1), (8)

1Though (5) is defined only for a differentiable CT-DM, in the example
at the end of this paper it will be numerically applied in a nonsmooth case.
We will show that, despite being formally not correct, in our case study it
provides an excellent result.



Figure 3. Fractional−N PLL architecture.

where ζ is the approximation order of the CT-DM.
The advantage of computing the above map, instead of

integrating the flow, is that the CT-DM is computed once,
analytically, or approximated numerically, and then used as a
static map to integrate the small signal through nonlinearities
and discontinuities. To determine the effects of a small
perturbation to an initial condition it is thus sufficient to iterate
the linear map (7) and the nonlinear map (8).

IV. A CASE STUDY

The onset of spurs in fractional−N PLL is mainly due to
static and dynamic mismatch of the CP and its interaction
with the digital delay usually present in the reset path of the
PFD [1]–[4]. The nonlinearity arising from this interaction
acts in a short interval of the PLL reference-signal period
and consequently the proposed approach can be exploited to
derive a more accurate small-signal model of the PLL dynamics
than a simple first order one, adequate to grasp the nonlinear
effects causing fractional spurs. We consider a Type-II wide-
band fractional−N PLL (see the block schematic in Fig. 3)
charaterized by a closed loop bandwidth f0 = 1 MHz, fref =
1/Tref = 50 MHz and Nint = 72 (as in [8]). The parameter
values of the loop filter (LF) (see Fig. 4 and Tbl. I) are derived
according [9]. The transfer function G(s) is of 2nd Butterworth

Figure 4. Upper left panel: The LF. Component parameters as in Tbl. I. Lower
left panel: The VCO. C = 2 pF and L = 0.9772 nH are such that fVCO =
frefNint = 3.6 GHz if vin = 0. iN(vC) = a7v7C + a5v5C + a3v3C + a1vC
where a7 = −8.9641×10−7, a5 = 2.5834×10−5, a3 = −1.5571×10−4,
a1 = −6.3524× 10−5, and f(vin, ic) = βvinic with β = −0.1157 V−1.
Right panel: The MOSFET CP. The component parameters are reported in
Tbl. I. For the transistors a Level-1 model is assumed. The logic levels of
the ideal square waveforms u(t) and d(t), respectively, are Vdd/2 (high logic
level) and Vdd (low logic level) and −Vdd/2 (high logic level) and −Vdd
(low logic level).

Table I
DEFINITION OF PARAMETERS FOR THE LF AND CP CIRCUITS IN FIG. 4.

C0
fz

KLPfp
C1

fp−fz
KLPfp

C2
1

2πR1fps

R0
1

2πC1fz
R1 1 kΩ Ru 1 kΩ

Rd 1 kΩ Cu 300 fF Cd 100 fF

Vdd 3 V vT 0.5 V λ 2× 10−5

k{p,n}
(1+µ{p,n})Icp

(0.5Vdd−VT )2
µp 0.01 µn −0.01

type, i.e.,

G(s) = K
Nint +Nfrac

KVCOIcp︸ ︷︷ ︸
KLP

1 + s
2πfz

s
(

1 + s
2πfp

) ,

with Nfrac = −2× 10−10, KVCO = 210 MHzV−1, K =
2.885× 1012, fp = 2.807 MHz, fz = 1/9f0, f0 = 1 MHz. The
nominal value Icp for both the up and down current sources
of the CP is set to 5 mA. The pole at fps = 2.5 MHz of the
original design [8] is implemented through the C2 capacitor
and the R1 resistor. The VCO (see Fig. 4) is modelled as a
modified version of the Van der Pol oscillator [5]. The parallel
connection of a nonlinear controlled current-source and of
the capacitor C forms an equivalent voltage-controlled linear
capacitor that allows the oscillator to be tuned.

The CP is modeled as in Fig. 4 where ip and in are both
statically and dynamically mismatched to account for different
transconductance and equivalent gate capacitance of the PMOS
and NMOS transistors. The PFD analog mixed signal (AMS)
circuit, characterized by the typical tristate architecture [5], [9],
drives the CP through the signals u(t) and d(t). The former
switches from its low logic level to the high one whenever a
positive edge of the ref (t) signal is detected. The latter does
the same according to the transitions of div(t). These events
correspond to discontinuities of the vector field governing the
PLL. If at t = t̄ both these signals are simultaneously at their
high logic level, a delayed event is scheduled at t̄+ td to reset
them to low logic level. We take td = 100 ps.

Following a procedure discussed in [5], the model in Fig. 3
can be rewritten as an equivalent model where the ΔΣ modulator
block is removed, and ref (t) is substituted with a signal ref (t+
ϕ(t)), where ϕ(t) is a time-dependent phase offset. The phase
offset affects the system dynamics only by changing the time
of switching of the signal u(t), therefore, it enters the model
as a time-dependent guard. To formulate the model with time-
independent guards, we define the state x to include the state
variables of the PLL, plus the variable ϕ. The equivalent model
is thus described as(

ẋ(t)
ϕ̇(t)

)
=

(
F (x(t), q(t))

1

)
+

(
0
β(t)

)
,

where

β(t) =
∑
k

2π (n[k]−NfracTref)

Nint +Nfrac
δ(t− t0 − kTref) . (9)



Figure 5. In the left panel the steady-state evolution of the vin(t) signal tuning
the VCO is reported. Black dots represent the samples obtained choosing
NT = 11. In the right panel an enlargement showing the time instants
corresponding to discontinuities of the vector field.

In Eq. (9), n[k] = N [k]− (Nint +Nfrac), i.e. it is the running
difference between the current value of the frequency division
ratio set by the ΔΣ modulator and the nominal fractional
division ratio of the PLL, which is constant during the k−th
working period of the system.

This approach grounds on [9], where a small-signal equiva-
lent source is introduced to model, in the frequency domain,
the effects of quantisation noise as jitter acting on div(t). Here,
since the PFD dynamics is governed by the relative position of
the (rising) edges of ref (t) and div(t), the jitter is moved to
the phase of the former thus considering the fractional−N PLL
as if it were an integer−N one and then altering its reference
signal instead of its frequency division ratio.

It is crucial to notice that the train of δ(·) functions in (9) acts
on the variable ϕ by instantaneously resetting its current value,
that remains constant from one δ(·) to the next. Consequently
it is possible to view β(t) as a sequence of perturbations to
the state of the system occurring once in any working period
of the integer−N PLL. To determine their effect we can study
the sensitivity of the steady state solution of the circuit with
respect to perturbations of its initial conditions.

By resorting to an improved version of the time-domain
shooting method [10], [11] the periodic steady state solution
γ(t) = (xs, ϕs)

T of the integer−N PLL in the [t0, t0 + Tref ]
time interval is computed (see Fig. 5) and stored at NT + 1
evenly-spaced time-samples tTj (j = 0, . . . , NT ). Furthermore
the NJ time instants tJl (l = 1, . . . , NJ ) corresponding to
discontinuities in the vector field are introduced. The index
j = ̄ such that tJl ∈ [tT̄ , t

T
̄+1] for l = 1, . . . , NJ is identified

and the CT-DM MtT̄+1−tT̄ (·) is approximated by a Taylor

Figure 6. The PSD of the vin(t) voltage obtained by resorting to a large-signal
simulation (in black) and to the proposed method (NT = 11) for ζ = 1 (in
red) and ζ = 3 (in green).

polynomial of order ζ = 3. The matrices Ψ(tTj , t
T
j−1), for j =

1, . . . , NT and j 6= ̄, are obtained by solving the variational
problem (7) associated to γ(t) in each time interval [tTj−1, t

T
j ]

choosing Ψ(tTj−1, t
T
j−1) = I . The β(t) signal in (9) is that of

the MASH 1-1 ΔΣ modulator sequence used in [4]. Assuming
t0 = 0, the effect of β(t) and consequently of the quantization
noise inherent in the sequence originating it, was computed
for 5× 105 working periods of the PLL by iterating the map(

ξx
ξϕ

)
k+1

=

NT +1∏
j=̄+1

Ψ(tTj , t
T
j−1)·

·

MtT̄ −tT̄−1

 ̄∏
j=1

Ψ(tTj , t
T
j−1) ·

(
ξx

ξϕ + β

)
k

− γ(t̄)

 ,
where the notation (·)k means that (·) is computed in t = kTref ,
ξx and ξϕ represent deviation from the steady state solution
components xs and ϕs, respectively. The power spectral density
(PSD) of the component of ξx corresponding to the vin(t)
signal tuning the VCO is plotted in Fig. 6 with the PSD
of the signal obtained by performing a transient simulation
of the fractional−N PLL for the same number of working
periods. The result of the proposed method with ζ = 1 is also
shown. This highlights how a simple linearisation of the steady
state dynamics does not capture the presence of spurs and
underestimates the effects of quantization noise.
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